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Abstract

In this informal note we provide some context and give two demonstrations of a theorem
from Becker and Kechris on Polish realizations of Borel group actions; the original proof
from [BK96] and the proof of a stronger version from [Hjo99]. The theorem is stated and
proved after a part containing some prerequisites of descriptive set theory.
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1 Introduction

This note aims to provide basic background on descriptive set theory, with the specific purpose of
providing an (almost) ‘self-contained’ proof of the Becker-Kechris theorem on Polish realizations
of Borel group actions ([BK96, Thm. 5.2.1]). Section 2 contains a lot of descriptive set theoretic
results in bulk, and exists for the sole purpose of gathering them in one place, in a section
of reasonable length. Most results in this section will be stated without proof, but precise
references will be given (as much as possible). Section 3 still contains a lot of prelimirary results
of descriptive set theory, but those ones are more specific, and tailored to our needs. We also
start giving some proofs. Sometimes. Section 4 contains both the statement and two different
proofs of the Becker-Kechris theorem, taken from [BK96, § 5.1], [Gao09, § 4.4] and [Hjo99].

The subjects covered in this note are very vast, and while our goal was to provide an accessible
exposition, a lot of (seemingly arbitrary) choices had to be made. Maybe the most criticizable
one is the fact that we chose to forgo the natural ‘order of proofs’ in favor of a more thematic
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one. We hope that any knowledgeable reader - who will notice that some results cannot be
proved without some appearing later, for example - will forgive us.

A lot of references, more or less precise, are provided. We warmly recommend that any
reader interested in those subjects consult them. We claim neither originality nor exhaustivity
(not a shred) for anything contained in this note, which was written mostly as a support when
learning the proofs.

2 Descriptive set theory cheat sheet

2.1 The first steps of descriptive set theory

Definition 2.1. A Polish space is a separable and completely metrizable topological space.
In particular it is Hausdorff and second countable.

We have the following essential/useful facts about Polish spaces, given in no specific order.
Recall that a Gδ set is a countable intersection of open sets. More on this will be discussed in
Section 2.3.

Remark 2.2. There always exists a bounded (often by 1) metric which is compatible with the
topology of a Polish space. Indeed, if d is a compatible metric, then min(1, d) is suitable, as it
is equivalent to d. Moreover min(1, d) has the same Cauchy sequences as d, in particular every
Polish space admits a compatible complete bounded metric.

Remark 2.3. By virtue of being second countable, Polish spaces satisfy the Lindelöf lemma:
every open cover of the space admits a countable subcover.

Proposition 2.4 ([Kec95, Thm. 3.11]). Let (X, τ) be a Polish space. Then Z ⊆ X is Polish
for the induced topology if and only if Z is Gδ in X. In particular a closed subspace of a Polish
space is Polish.

Proposition 2.5 ([Kec95, Prop. 3.3]). Let ((Xn, τn))n∈N be a sequence of Polish spaces. Both
the product

∏
n∈NXn and the sum (i.e. the disjoint union)

⊔
n∈NXn are Polish spaces, for their

respective topologies. We recall also that the product topology on
∏

n∈NXn has{∏
n∈N

Un

∣∣∣∣∣ Un ∈ τn and Un ̸= Xn for finitely many n

}

as a base, and that the open sets in the sum
⊔

n∈NXn are exactly the sets of the following form:{
U ⊆

⊔
n∈N

Xn

∣∣∣∣∣ ∀n ∈ N : U ∩Xn ∈ τn

}
.

Here are a few topological spaces of particular importance in descriptive set theory.

Cantor space C = {0, 1}N
Baire space N = NN
Hilbert cube IN = [0, 1]N

Theorem 2.6 ([Kec95, Thm. 4.14]). Up to homeomorphism, the Polish spaces are exactly the
Gδ subspaces of the Hilbert cube IN.

Theorem 2.7 ([Kec95, Cor. 6.5]). A Polish space X is either finite, countable, or it contains a
homeomorphic copy of the Cantor space C and thus has cardinality 2ℵ0 .
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Do note that in descriptive set theory, questions of cardinality are linked to the perfect set
property (see [Kec95, § 6]), which we chose not to discuss here. The previous theorems are
mainly here to give intuition about Polish spaces.

In a similar flavour, but for those who prefer the Baire space N rather than the Cantor
space, we have the following. We recall that a subset A of a topological space is Kσ if it is a
countable union of compact sets.

Theorem 2.8 (Hurewicz, see e.g. [Kec95, Thm. 7.10]). Let X be a Polish space. Then X
contains a closed subspace homeomorphic to N if and only if X is not Kσ.

Polish spaces are the topological spaces that give rise to a widely used measurable structure
via their Borel sets. We recall that the Borel σ-algebra B(X) of a topological space is the
smallest σ-algebra containing the open sets, i.e. the σ-algebra generated by the topology of the
space. We say that the σ-algebra is countably generated when the topology is second countable,
so in particular it is the case for Polish spaces. In fact, one can say more: Borel sets coming from
Polish topologies are classified up to cardinality of the underlying space. When this cardinality
is 2ℵ0 , we call the resulting measurable spaces standard Borel spaces.

Definition 2.9. A standard Borel space X is an uncountable measurable space with a σ-
algebra B(X) of subsets that are Borel for some Polish topology on X.

Proposition 2.10. Let ((Xn,Bn))n∈N be a sequence of standard Borel spaces. Both the prod-
uct

∏
n∈NXn and the sum

⊔
n∈NXn are standard Borel spaces, for their respective measurable

structure. We recall also that the product σ-algebra on
∏

n∈NXn is generated by sets of the form{∏
n∈N

An

∣∣∣∣∣ An ∈ Bn and An ̸= Xn for finitely many n

}
,

(equivalently one can generate this σ-algebra by asking that An ̸= Xn for all but one n). Recall
now that the Borel sets in the sum

⊔
n∈NXn are exactly the sets of the following form:{

A ∈
⊔
n∈N

Xn

∣∣∣∣∣ ∀n ∈ N : A ∩Xn ∈ Bn

}
.

We quickly state an important fact. It is a consequence of a theorem that we will focus on
in Section 3.3, and can also be deduced from Theorem 2.15.

Proposition 2.11 ([Kec95, Cor. 13.4]). Let (X,B) be a standard Borel space, and Y ∈ B be a
Borel subset. Then (Y,B↾Y = {A ⊆ Y | A ∈ B}) is also a standard Borel space.

The following is the ‘Borel version’ of Theorem 2.7.

Theorem 2.12 ([Kec95, Thm. 13.6]). Let X be Polish and A ⊆ X be Borel. Then A is either
finite, countable, or it contains a copy of a Cantor space. In particular, any standard Borel space
has cardinality 2ℵ0.

As an important -and useful- example of a standard Borel space, we give the definition of
the Effros Borel space.

Definition 2.13. Let (X, τ) be a topological space. We denote by F (X) the set of closed
subsets of X. We endow F (X) with the σ-algebra BEff generated by the sets

{F ∈ F (X) | F ∩ U ̸= ∅} ,

for U ∈ τ . The measurable space (F (X),BEff ) is called the Effros Borel space of X.
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Theorem 2.14 (see e.g. [Kec95, Thm. 12.6]). The Effros Borel space (F (X),BEff ) of a Polish
space X is a standard Borel space.

The terminology ‘standard’ is justified by the Borel isomorphism theorem (Theorem 2.17),
which is proved by showing that any standard Borel space is Borel isomorphic to C. The proof
also uses the following theorem -or rather its corollary- which can be of independant interest.
More about direct images of Borel sets will be discussed in Section 2.2.

Theorem 2.15 (Lusin-Suslin, see e.g. [Kec95, Thm. 15.1]). Let X and Y be two Polish spaces,
and let f : X → Y be a continuous map. Then for every Borel subset A of X, if f↾A is injective,
then f(A) is Borel.

Corollary 2.16 (see e.g. [Kec95, Cor. 15.2]). Let X and Y be two standard Borel spaces, and
let f : X → Y be a Borel map. Then for every Borel subset A of X, if f↾A is injective, then
f(A) is Borel, and f is a Borel isomorphism between A and f(A).

Theorem 2.17 (The Isomorphism Theorem, [Kec95, Thm. 15.6]). Any two standard Borel
spaces X and Y are Borel isomorphic if and only if Card(X) = Card(Y ).

In particular, an important consequence of Corollary 2.16 is the following:

Proposition 2.18 ([Kec95, Exercise. 15.4]). Let X be a space, with two Polish topologies τ and
τ ′. If τ ⊆ B(τ ′), then B(τ) = B(τ ′). In particular, a Polish refinement of a Polish topology
yields the same Borel structure.

2.2 Borel Hierarchy, and a glimpse of what lies beyond

We just saw that the Borel σ-algebra generated by the open sets of a Polish topology is ‘flexible’
in the sense of Theorem 2.17: they are all the same, for a given cardinality. Morally this
flexibility can be explained by the possible ‘complexity’ of the Borel sets themselves: it is a
popular opinion to consider non-Borel sets to be ‘pathological’, but even some Borel sets can be
quite ‘dysfunctional’. The Borel Hierarchy’s aim is to classify Borel sets based on how far they
are from the original topology of the space.

As usual anything in this section is classical and can be found in [Kec95, § 11.B, § 14 and
§ 22.A], and we also warmly recommend the Introduction to Descriptive Set Theory notes from
Anush Tserunyan, available on her webpage.

Notation 2.19. We denote by ω1 the first uncountable ordinal. For the rest of this section,
α will denote an ordinal such that 1 ⩽ α < ω1. We also fix a metrizable space (X, τ) until the
end of the section.

The Borel Hierarchy. We define the following three families of subsets of X:
Σ0
1(X, τ) := τ = {U ⊆ X | U is open} ,

Π0
1(X, τ) := {X \ U | U is open} = {F ⊆ X | F is closed} ,

∆0
1(X, τ) := Σ0

1(X, τ) ∩Π0
1(X, τ) = {A ⊆ X | A is clopen} .

Note already that when there is no danger of confusion, for instance when there is only one
topology involved, we will write Σ0

1 instead of Σ0
1(X, τ), and the same holds for all similar

notations. We will use the notation Π0
1 = X \ · Σ0

1 to signify that the sets in Π0
1 are complements
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of sets in Σ0
1.

We then increase the lower indices by setting
Σ0
α :=

{⋃
n∈N

An

∣∣∣∣∣ ∀n ∈ N : An ∈ Π0
αn

, for some αn < α

}
,

Π0
α := X \ · Σ0

α,

∆0
α := Σ0

α ∩Π0
α,

(by a transfinite induction). The classes ∆0
α are sometimes called the ambiguous classes.

Notation 2.20. For a collection E of subsets of X, we let
Eσ :=

{⋃
n∈N

An

∣∣∣∣∣ An ∈ E , n ∈ N

}
,

Eδ :=

{⋂
n∈N

An

∣∣∣∣∣ An ∈ E , n ∈ N

}
.

In particular, if we denote by (as is tradition) by G(X) and F (X) the families of open and closed
subsets of X, respectively, we have

Σ0
1 = G(X),

Σ0
2 = (F (X))σ = Fσ(X),

Σ0
3 = (Gδ(X))σ = Gδσ(X),

Σ0
4 = (Fσδ(X))σ = Fσδσ(X),

. . .

Π0
1 = F (X),

Π0
2 = (G(X))δ = Gδ(X),

Π0
3 = (Fσ(X))δ = Fσδ(X),

Π0
4 = (Gδσ(X))δ = Gδσδ(X),

. . .

With these notations we have

Σ0
α+1(X, τ) = (Π0

α(X, τ))σ and Π0
α+1(X, τ) = (Σ0

α(X, τ))δ.

We do not rigorously state the (non-trivial!) inclusion properties between these classes, as
they are easy to read on Figure 1.

Σ0
1 Σ0

2 Σ0
α

∆0
1 ∆0

2 ∆0
3 ∆0

α ∆0
α+1

Π0
1 Π0

2 Π0
α

⊆

X\·

⊆

X\· X\·

⊆⊆

⊆

⊆

⊆

...

⊆

⊆

...

⊆ ⊆ ⊆

︸ ︷︷ ︸
Borel sets

Figure 1: The Borel hierarchy.

We do however state the following closure properties of the classes of the Hierarchy, as well
as the proposition justifying the terminology:
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Proposition 2.21 ([Kec95, Prop. 22.1]). The classes Σ0
α, Π0

α and ∆0
α are closed under finite

reunion, finite intersection, and continuous preimages. Moreover, Σ0
α is closed under countable

unions, Π0
α is closed under countable intersection, and ∆0

α is closed under complements.

Proposition 2.22. We have the following equality:

B(X) =
⋃

α<ω1

Σ0
α =

⋃
α<ω1

Π0
α =

⋃
α<ω1

∆0
α.

Finally, for uncountable Polish spaces, the classes are distinct.

Theorem 2.23 ([Kec95, Thm. 22.4]). Let X be an uncountable Polish space. For any 1 ⩽ α <
ω1 we have Σ0

α ̸= Π0
α, and ∆0

α ⊊ Σ0
α ⊊ ∆0

α+1 as well as ∆0
α ⊊ Π0

α ⊊ ∆0
α+1. In other words, the

inclusion in Figure 1 are all strict.

In the rest of this section, we quickly define analytic sets, as well as co-analytic sets, and the
more general class of projective sets. While one might stumble onto analytic sets ‘quite often’,
as they are very natural sets to consider, co-analytic sets and projective sets, are more niche,
and are presented here mostly for culture, and for the sake of having a (somewhat) complete
picture in mind. People outside of pure descriptive set theory rarely have to work with those
sets.

From the Lusin Novikov theorem (see [Kec95, Thm. 18.10]), we have the following strenght-
ening of Corollary 2.16.

Proposition 2.24 ([Kec95, Exercise. 18.14]). Let X and Y be two standard Borel spaces, and
let f : X → Y be a Borel countable-to-one function (i.e. the preimage of any point is at most
countable). Then f(X) is Borel.

This result states that the class of Borel subsets of a standard Borel space is closed under
countable-to-one Borel images, but this is not true for general Borel images. Actually, it is not
even closed under continuous images, and even if we add a Polish topology, the class of Borel
subsets of a Polish space is not closed under continuous images. Enter the analytic sets.

Definition 2.25. Let (X, τ) be a Polish space. A set A ⊆ X is called analytic if there exists
a Polish space Y and a continuous function f : Y → X with f(Y ) = A. We denote by Σ1

1(X, τ)
the family of analytic subsets of X. Again, we will write Σ1

1 if there is no risk of confusion.
It is possible to extend the definition: if X is a standard Borel space instead, and A ⊆ X,

we say that A is analytic if there exists a Polish space Y and a Borel isomorphism g : X → Y
such that A is analytic in Y . This is independant of the choice of Y and g.

Proposition 2.26 ([Kec95, Prop. 14.4]). Let X and Y be two Polish spaces.

1. if (An) is a sequence of analytic sets, then
⋃

n∈NAn and
⋂

n∈NAn are analytic, i.e. Σ1
1 is

closed under countable unions and intersections;

2. if f : X → Y is Borel, then for A ⊆ X analytic and B ⊆ Y analytic, f(A) and f−1(B)
are analytic, i.e. Σ1

1 is closed under Borel images and preimages.

Borel sets are of course analytic, but in the converse true? It is actually not a trivial task to
prove that the answer is negative.

Theorem 2.27 (Suslin, see e.g. [Kec95, Thm. 14.2] or [Sri98, Thm. 4.1.5]). Let X be an
uncountable Polish space. Then B(X) ⊊ Σ1

1. In particular, this holds for a standard Borel space.
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We now define the co-analytic sets, and the first ‘projective class’ of sets, which, as we will
see, is just the class of Borel sets themselves.

Definition 2.28. Let (X, τ) be a Polish space.

1. A set A ⊆ X is called co-analytic if it is the complement of an analytic set, i.e. if
X \A ∈ Σ1

1. Naturally, we denote by Π1
1(X, τ) = Π1

1 the class of co-analytic sets.

2. The bi-analytic sets are the sets that are both anaytic and co-analytic. We denote by
∆1

1(X, τ) = ∆1
1 their class, i.e. ∆1

1 = Σ1
1 ∩Π1

1.

The main tool to prove the important Theorem 2.30 is the following separation theorem of
Lusin.

Theorem 2.29 (The Lusin Separation Theorem, see e.g. [Kec95, Thm. 14.7]). Let X a
standard Borel space, and let A,B ∈ Σ1

1 be disjoint. Then there exists a Borel set C separating
A and B, i.e. satisfying A ⊆ C and C ∩B = ∅.

Theorem 2.30 (Suslin, see e.g. [Kec95, Thm. 14.11]). For any standard Borel space X, we
have B(X) = ∆1

1.

We finish with the recursive definition of Projective sets, which is represented in Figure 2.
By Theorem 2.30, we can see this Projective Hierarchy as an extension of the more well-known
Borel Hierarchy. Again, we give very little details and refer the interested reader to [Kec95,
§ 37]. Notice that the lower indices are integers.

The Projective Hierarchy. Everything is defined in uncountable Polish spaces. The families
Σ1
1, Π1

1 and ∆1
1, are already defined, we then inductively define

Σ1
n+1 :=

{
projX(A) | X Polish, A ⊆ X ×N , A ∈ Π1

n(X ×N )
}
,

Π1
n+1 := X \ · Σ1

n+1 =
{
X \A | X Polish, A ∈ Σ1

n+1(X)
}
,

∆1
n+1 := Σ1

n+1 ∩Π1
n+1.

This definition (for Σ1
n+1) is maybe a bit confusing for those who are not well-versed in descriptive

set theory (such as the author of this note), so we have the more natural following one:

Σ1
n+1 =

{
f(A) | A ∈ Π1

n(Z), f : Z → X continuous, X,Z Polish
}
,

which follows from the following proposition on closure properties.

Proposition 2.31 ([Kec95, Prop. 37.1 and Exercise 37.3]).

a) The Σ1
n are closed under Borel images and preimages, countable unions and intersections.

b) The Π1
n are closed under Borel preimages, countable unions and intersections.

c) The ∆1
n are closed under Borel preimages, complements, and countable unions. In particular,

each ∆1
n is a σ-algebra, generalizing the Borel one.

The projective hierarchy is given in Figure 2.
We end this section by a statement affirming that the hierarchy is proper.

Theorem 2.32 ([Kec95, Thm. 37.7]). For any uncountable Polish space X and any n, ∆1
n ⊊

Σ1
n ⊊ ∆1

n+1, and idem for Π1
n.
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Σ0
1 Σ0

2 Σ0
α

∆0
1 ∆0

2 ∆0
3 ∆0

α ∆0
α+1

Π0
1 Π0

2 Π0
α

⊆

X\·

⊆

X\· X\·

⊆⊆

⊆

⊆

⊆

...

⊆

⊆

...

⊆ ⊆ ⊆

︸ ︷︷ ︸
Borel sets

Σ1
1 Σ1

2 Σ1
n

∆1
1 ∆1

2 ∆1
3 ∆1

n ∆1
n+1

Π1
1 Π1

2 Π1
n

⊆

X\·

⊆

X\· X\·

⊆⊆

⊆

⊆

⊆

...

⊆

⊆

...

⊆ ⊆ ⊆

︸ ︷︷ ︸
Projective setsCo-analytic sets

Analytic setsContinuous
image

Figure 2: The Borel and Projective hierarchies.

2.3 Baire Category and Baire property

This section is dedicated to Baire category, the Baire Category Theorem, the Baire property
BP (a.k.a. Baire measurability). We start with a few definitions, that bear a resemblance to
analogous notions of measure theory (that may be more familiar to the ergodic theorist), that
we will quicky go over in Section 2.6. Please bear with us until then.

For this section, we refer the reader that is eager to learn more (and to have proofs) to
[Oxt71] (on top, of course, of the usual recommendations [Kec95, § 8] and Tserunyan’s notes).

Definition 2.33. Let X be a topological space, along with a subset A ⊆ X.

• A is nowhere dense if its closure A has empty interior, i.e. if Int(A ) = ∅, equivalently,
if X \ A is dense, equivalently, if there is no open set in which A is dense. A is nowhere
dense if and only if A is nowhere dense.

• A is meager (or of first category) if it is a countable union of nowhere dense sets, i.e.
if there exists a sequence (An) of nowhere dense sets such that A =

⋃
n∈NAn.

• A is of second category if it is non-meager.

• A is comeager if it is the complement of a meager set. It is also sometimes called residual.

Note that A is comeager if and only if it contains the intersection of a countable family of dense
open sets.

Example 2.34. We give a few basic examples.
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1. The Cantor space C, seen as (it is homeomorphic to it) the triadic Cantor set, has empty
interior, hence it is nowhere dense in [0, 1]. As an aside, Figure 3 is a representation of the
first ten steps of the triadic Cantor space, with a radial construction, which is a bit less
common than the usual ‘linear’ one. It is from the triadic Cantor set Wikipedia page.

Figure 3: Ten steps of a radial representation of a triadic Cantor set construction.

2. A compact set is nowhere dense in N (recall in fact that N is, up to homeomorphism, the
unique nonempty Polish zero-dimensional – i.e. having a topological base of clopen sets –
for which all compact subsets have empty interior, see e.g. [Kec95, Thm. 7.7]), and thus
a Kσ-set is meager in N .

3. Any finite set is nowhere dense in R, hence Q is meager in R, and any interval of R is
non-meager.

Remark 2.35. The meager sets represent ‘small’ sets, and are morally analogous (for the
reader familiar with measure theory, more in Section 2.6) to sets of measure 0, a.k.a. null sets.
Comeager sets, in contrast, are very big and are morally analogous to full measure sets, a.k.a.
conull sets. In fact, the nowhere dense sets form an ideal, i.e. a collection of sets containing
∅ and closed under finite unions, as well as subsets. The meager sets form the corresponding
σ-ideal, where we allow countable union instead. As pointed out by Kechris, being a σ-ideal is
a notion of smallness, and null sets in a measure space also form a σ-ideal. We will define the
corresponding σ-algebra later, which will be the Baire σ-algebra, containing both the meager
sets and the open sets.

The following two basic properties follow from the definitions.

Proposition 2.36. Let X be a topological space, along with a subset A ⊆ X.

1. A is meager ⇔ A is contained in a countable union of closed nowhere dense sets.
In particular, every meager set is contained in a meager Fσ set.

2. A is comeager ⇔ A contains a countable intersection of dense open sets.
In particular, a dense Gδ set is comeager.

Before getting to the Baire σ-algebra, we give the definition of Baire spaces, and state the
seminal Baire Category Theorem.

Definition 2.37. A topological space X is a Baire space if it satisfies the following equivalent
conditions:
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1. Every nonempty open set in X is non-meager.

2. Every meager set in X has empty interior.

3. Every comeager set in X is dense.

4. The intersection of countably many dense open sets in X is dense.

5. The union of countably many closed sets of empty interior in X has empty interior.

Proposition 2.38 ([Kec95, Prop. 8.3]). Any open subset of a Baire space is a Baire space.

In particular, in Baire spaces, a set is comeager if and only if it contains a dense Gδ set. In a
sense, the Baire spaces are the ‘well-behaved’ spaces in which the ‘opposite properties’ of being
meager and comeager are truly opposite.

Theorem 2.39 (The Baire Category Theorem, see e.g. [Kec95, Thm. 8.4]). Every com-
pletely metrizable space is Baire, in particular every Polish space is Baire. Every locally compact
Hausdorff space is Baire.

Corollary 2.40. In nonempty Polish spaces, dense meager sets are not Gδ. In particular, Q is
not a Gδ subset of R.

Proof. If a subset is dense Gδ, then it is comeager, and hence nonmeager.

Remark 2.41. The Choquet game, a game of which a stronger version will be discussed in this
note (see Section 3.2) can be used to check – amongst other things – if a space is Baire, see
[Kec95, Thm. 8.11].

We can now give the definition of sets with the Baire property, which are the sets, that are
‘meagerly’ close to open sets. In other words, sets with the Baire property are ‘almost-open’.
As a warning, sets with the Baire property are not to be confused with (some definition of)
Baire measurable sets (or sometimes Baire sets, not to be confused with Baire spaces, not to be
confused with THE Baire space N ...), which are defined from a certain type of Baire functions,
which we will not discuss here, although some authors still call them Baire-measurable. As it
is very confusing, here we chose to stick to the name Baire property - BP -, even if, as we will
see, they form a σ-algebra. For measurable functions with regards to this σ-algebra, we chose
the (criticizable) name ‘BP-measurable’.

Notation 2.42. Let X be a topological space. For any two subsets A,B of X, we write

A =∗ B

to signify that A and B are equal modulo meager sets, i.e. that the symmetric difference
A∆B is meager. One can check that =∗ is an equivalence relation on P(X) that respects
complementation and countable unions and intersections.

Definition 2.43. Let X be a topological space, and A ⊆ X. We say that A has the Baire
property, that we will denote by BP, if A =∗ U for some open set U ⊆ X.

Proposition 2.44 ([Kec95, Prop. 8.22]). For any topological space X, the class of sets with BP
is a σ-algebra on X, and it is moreover the smallest σ-algebra containing all the open sets and
all the meager sets. In particular, all open, closed, Gδ and Fσ sets have BP.

Once again for the sole purpose of gaining some intuition, we state the following proposition.

Proposition 2.45 ([Kec95, Prop. 8.23]). Let X be a topological space, and A ⊆ X. The
following are equivalent:
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1. A has BP;

2. A = G ∪M , where G is Gδ and M is meager;

3. A = F \M , where F is Fσ and M is meager.

Remark 2.46. Constructing sets without BP in R is not that easy. An example using the
axiom of choice is given in [Kec95, Ex. 8.24].

We give the following useful property, and given that we will be needing it, we also give the
proof. It is sometimes referred to as the Baire alternative.

Proposition 2.47 ([Kec95, Prop. 8.26]). Let X be a topological space and suppose that A ⊆ X
has BP. Then either A is meager or there is a nonempty open set U ⊆ X such that A is comeager
in U . If X is a Baire space, exactly one of these alternatives holds.

Proof. We write, by definition, A∆U = M , with U open and M meager. If A is not meager,
necessarily U ̸= ∅, and then A is comeager in U . If X is a Baire space, we just have to show
that a meager set A can’t be comeager in a nonempty open set U . This is clear, as if it was the
case, both A and U \ A would be meager, meaning that the open set U would be contained in
two meager sets, contradicting 2. in Definition 2.37.

We of course want to compare the newly obtained σ-algebra of sets with BP to the good ol’
σ-algebra of Borel sets. We have the following.

Proposition 2.48 ([Kec95, Prop. 11.5]). Every Borel set has BP, and every Borel function is
BP-measurable. (We recall that a function f : X → Y between topological spaces is Borel if the
preimage by f of any open set is Borel, and BP-measurable if the preimage of any open set has
BP).

The converse does not hold. In fact, the following theorem asserts that all analytic sets have
BP, so any set in Σ1

1 \∆1
1 has BP but is not Borel (such a set exists by Theorem 2.27).

Theorem 2.49 (Lusin-Sierpiński, see e.g. [Kec95, Thm. 21.6]). Let X be a Polish space. All
analytic sets have BP.

Again the converse does not hold.

Proposition 2.50. Let X be an uncountable Polish space. We have Σ1
1 ⊊ { sets with BP }.

Proof. By Proposition 2.44, the complement of a set with BP has BP. Therefore, it suffices to
find a set which is not analytic, but whose complement is analytic. In other words, we have to
find a set in Π1

1 \ Σ1
1. By Theorem 2.27 such sets exist.

We end this section with a interesting application related of BP related to Vitali sets. We
give a quick definition, then the proof. Credits go to user Wojowu, from an answer to the
question: ‘Topological proof that a Vitali set is not Borel’ on mathoverflow. More details can
(most likely) be found in [Oxt71].

Definition 2.51. A Vitali set V is a subset of [0, 1] such that, for each real number r, there
exists exactly one v ∈ V such that v− r ∈ Q. One can construct a Vitali set by using the axiom
of choice to choose a representant in [0, 1] of each class of R/Q. In particular a Vitali set V is
uncountable and the difference of two distinct elements of V is irrational.

Proposition 2.52. Any Vitali set V ⊆ [0, 1] does not have BP. In particular, it is not Borel.
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Proof. Assume that V has BP. By Proposition 2.47, either V is meager, or it is comeager in some
open interval U ⊆ [0, 1]. We first note that V cannot be meager: [0, 1] is contained in a countable
union (over the rationals) of translates of V , and that would contradict 2. in Definition 2.37.
On the other hand, V also cannot be comeager in U : if it were, for any q ∈ Q, U ∩ (V + q) is
contained in U \ V (by definition of V ), so by taking again the countable (over the rationals)
union, we see that U is meager, hence V is meager, a contradiction.

2.4 About Polish groups

As we have a particular interest for groups, we briefly present some of the most essential facts
about Polish groups. Do note once again that this is a very rich theory, and we only scratch
the surface here. On top of the usual recommendations, we refer to Julien Melleray’s notes on
descriptive - group - theory, which are available on his webpage, although in french, as well as
[BK96, § 1]. This section is very disorderly, as there are many interesting results, and some
choices had to be made as to what would be included. We hope any reader will forgive us.

Definition 2.53. A topological group is a group with a topology for which the applications
g 7→ g−1 and (g, h) 7→ gh are continuous (for the topology on G and G2 respectively). A Polish
group is a topological group whose topology is Polish.

The following closure properties are basic.

Proposition 2.54 ([Gao09, Prop. 2.2.3]). A countable product of Polish groups is a Polish group
for the product topology.

Proposition 2.55 ([Gao09, Prop. 2.2.1]). Let G be a Polish group, and endow H ⩽ G with the
subspace topology. Then the following are equivalent:

1. H is Polish;

2. H is Gδ in G;

3. H is closed in G.

As stated before, any Polish space admits a compatible complete metric, but as sad as it
is, there is a priori no reason for this metric to be left (or right)-invariant (i.e. d(g, g′) =
d(hg, hg′) for any g, g′, h ∈ G). On the other hand a left-invariant metric always exists for any
metrizable topological group from the Birkhoff-Kakutani theorem (see e.g. [Kec95, Thm. 9.1])
but in general it is not complete. Polish groups that admit compatible complete left-invariant
metrics are called cli. As an example, S∞ is not cli (see e.g. [Gao09, Ex. 2.2.7]).

We however have the following construction, which is similar in spirit to the notion of com-
pletion of a metric space, but in the context of topological groups, and uses Proposition 2.55.

Theorem 2.56 ([BK96, Thm. 1.1.2] and [BK96, Cor. 1.2.2]). Let G be a topological group, with
d a compatible left-invariant metric. Then the metric D defined on G by

D(g, h) = d(g, h) + d(g−1, h−1)

is a compatible metric on G. Moreover, the multiplication on G extends in a unique manner to
the completion Ĝ of (G,D), which is then a topological group.
In particular, if G is Polish, then D is a compatible complete metric on G.

Proposition 2.57 ([Gao09, Prop. 2.2.6]). Let G be a Polish group with a compatible left-
invariant metric d. Then G is cli if and only if d is complete.
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We now turn our attention to quotients, which require a bit more care. We give the main
steps, again with no details but with references.

Definition 2.58. Let H be a closed subgroup of a Polish group G, and let d be a left-invariant
metric on G. We define a metric d∗ on the set of right-cosets G/H of H by setting

d∗(Hg1, Hg2) := inf {d(k1, k2) | k1 ∈ Hg1, k2 ∈ Hg2}
= inf {d(g1, k) | k ∈ Hg2} (by left-invariance).

Lemma 2.59 ([Gao09, Lem. 2.2.8]). With the same notations as before, d∗ is a compatible
metric (with the quotient topology) on G/H.

The fact that our construction yields a Polish group is due to the following result of Sierpiński.

Theorem 2.60 (Sierpiński, see e.g. [Gao09, Thm. 2.2.9]). Let X be a Polish space, Y a
metrizable space, and π : X → Y a continuous and open surjection. Then Y is Polish.

We thus have the following.

Proposition 2.61 ([BK96, Prop. 1.2.3], [Gao09, Thm. 2.2.10 and Exercise. 2.2.7]). Let G be a
Polish group, and let H ⩽ G be a closed normal subgroup. Then G/H is a Polish space for the
quotient topology. If moreover H is normal in G, then G/H is a Polish group and the compatible
metric d∗ is left-invariant.

We give a bit of context about the next important fact we will mention: automatic continuity.
Baire category results behave exceptionally well with Polish groups, and we can obtain very
strong results with very little work. We start with the following, ensuring that Polish groups
are ‘big enough’ to work with.

Proposition 2.62 ([Gao09, Prop. 2.3.1]). Let G be a topological group. The following are
equivalent, and are in particular satisfied for Polish groups:

1. G is a Baire space;

2. G is non-meager;

3. Every nonempty open subset of G is non-meager;

4. There exists a non-meager open subset of G;

5. There exists a non-meager subset of G with BP.

Next is the very important Pettis Theorem:

Theorem 2.63 (Pettis, see e.g. [Gao09, Thm. 2.3.2]). Let G be a topological group, and A ⊆ G
be non-meager with BP. Then the set A−1A =

{
g−1h | g, h ∈ A

}
contains an open neighborhood

of eG.

The following consequence of Theorem 2.63 is arguably its most useful one. It is the starting
point of the study of automatic continuity, in which one aims to expand on the following result.

Proposition 2.64 ([BK96, Thm. 1.2.6]). Let G and H be two Polish groups. Any BP-measurable
homomorphism φ : G → H is continuous. If moreover φ(G) is not meager, φ is also open.

In particular, by Proposition 2.48 any Borel homomorphism between Polish groups is con-
tinuous. In fact, thanks to Theorem 2.49 we have the even more general following result: any
analytic homomorphism (the preimage of an open set is analytic) is continuous. A direct conse-
quence is the following:
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Proposition 2.65 ([Gao09, Exercise. 2.3.7]). Let G be a topological group, and τ1 and τ2 be two
topologies on G producing the same Borel structure. Then τ1 = τ2.

Next is another consequence of Pettis’ result. We believe it is not mentioned enough, so as
a sign of protest, we give a proof.

Proposition 2.66 ([Gao09, Exercise. 2.3.3]). Every subgroup of a topological group G which
has BP and is non-meager is clopen. In particular a closed non-meager subgroup of a topological
group is clopen.

Proof. Let H ⩽ G have BP and be non-meager. By Theorem 2.63, H−1H = H contains a
nonempty neighborhood U of eG in G. It is then easy to see that H is open, as each h ∈ H is
contained in the open set hU ⊆ H.

The fact that H is closed is then a general fact: the left cosets of H are open (by virtue of
G being a topological group), and their union is G, so H is closed as the union of all the cosets
that are not H is open.

Do note also that the second part of the previous proof yields the following easier result: any
open subgroup of a topological group is clopen. Moreover, we get the following result, which is
in a way the starting point of the study of the small index property.

Proposition 2.67 ([BK96, § 1.2]). Let G be a Polish group and H a closed subgroup of G. Then
G/H is at most countable if and only if H is clopen.

We say that a Polish group G is universal if any Polish group is topologically isomorphic to
a closed subgroup of G. Once again with culture as our main interest, we present two results of
Uspenskij about universal Polish groups.

Theorem 2.68 (Uspenskij, see e.g. [Gao09, Thm. 2.5.2 and Thm. 2.5.3]). The group Iso(U) of
all isometries of the universal Urysohn space, and the group Homeo(IN) of all homeomorphisms
of the Hilbert cube are both universal Polish groups.

2.5 A bit of action

In this section we give a few important results about actions of some topological groups, which
apply in particular for Polish groups. The most important result for us is indubitably Theo-
rem 2.73, which we will use crucially in the second proof of Theorem 4.1. Once again this section
will be very bare-bones, and we specifically refer to [BK96] for more on this rich topic.

Definition 2.69. Let G be a group, and X be a space. A G-action, or an action of G on X,
is a map

α : G×X −→ X
(g, x) 7−→ g · x

satisfying α(eG, x) = eG ·x = x for any x ∈ X and α(gh, x) = (gh) ·x = g · (h ·x) = α(g, α(h, x))
for any g, h ∈ G and x ∈ X. We also say that X is a G-space. In particular, for each g ∈ G,
the map x 7→ g ·x is a bijection of X, of inverse x 7→ g−1 ·x and the map sending g to (x 7→ g ·x)
is a group homomorphism between G and the group of permutations of X.

If now G and X are topological, then the action α is continuous if it is continuous as a
function from G×X to X, in which case we have a homomorphism of G into the group Homeo(X)
of homeomorphisms of X. In this case we also say that X is a topological G-space, and if
G and X are Polish, we call X a Polish G-space. We also say sometimes that α is jointly
continuous, and this notion of continuity is not to be confused with the following weaker one.
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Definition 2.70. Let G be a topological group, X a topological space, and α a G-action on
X. The action α is separately continuous if for any g ∈ G the map αg : X → X defined by
αg(x) = α(g, x) is continuous and for any x ∈ X the map αx : G → X defined by αx(g) = α(g, x)
is continuous.

Of course joint continuity implies separate continuity and the converse is not true in general,
but for actions of groups ‘with Polish topologies’, we have the following.

Theorem 2.71 ([Kec95, Thm. 9.14]). Let G be a group with a topology that is metrizable and
Baire and such that h 7→ gh is continuous for each g ∈ G. Let also G be acting on a metrizable
space X. Then the action is jointly continuous if and only if it is separately continuous.
In particular, by considering the left action of G on itself by multiplication, we have the following:
if G is a group with a metrizable and Baire topology for which g 7→ g−1 is continuous and
(g, h) 7→ gh is separately continuous, then G is a topological group.

Next is Miller’s theorem, ensuring that some ‘natural sets’ arising from a Polish group action
are well-behaved.

Theorem 2.72 (Miller, see e.g. [Gao09, Thm. 3.3.2]). Let G be a Polish group acting on a
standard Borel space X. Then for any x ∈ X the stabilizer Gx := {g ∈ G | g · x = x} is closed
in G, and the orbit G · x := {g · x | g ∈ G} is Borel in X.

Let us also quickly mention that Miller’s theorem actually holds for Borel G-spaces, and that
the ‘every orbit is Borel’ result for Polish G-spaces had already been proved by Ryll-Nardzewski
(see e.g. [Gao09, Thm. 3.1.10]).

Next we give the statement of one of the most important ‘realization’ theorem for actions
of Polish groups. In contrast to Theorem 4.1, the ‘larger’ space K is compact Polish, but the
G-invariant set Φ(X) is ‘just’ Borel, while Theorem 4.1 allows us to directly ‘put a Polish topol-
ogy’ on X.

Theorem 2.73 (Becker-Kechris, [BK96, Thm. 2.6.6]). For any Polish group G, there exists
a compact Polish space K along with a continuous G-action β : G×K → K, which are universal
in the following sense: for any Borel G-action α on any standard Borel space X, there is a
Borel injection Φ : X → K which is G-equivariant: for any g ∈ G and any x ∈ X:

Φ(α(g, x)) = β(g,Φ(x)).

In other words, the Borel G-action α on X can be Borel embedded into the universal compact
Polish G-space K.

For those who like commutative diagrams, Theorem 2.73 gives us the following one:

X X

K K

α

Φ Φ

β

2.6 A sprinkle of measure

Although this is not the subject matter of this note, one (the author) cannot help wanting to see
things through a measured lens. Far from us the idea of redefining the basics of measure theory,
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our main goal is to link the universally measurable sets to the sets we already encountered. The
main reference for this section (without surprise) is [Kec95, § 17].

Definition 2.74. Let X be a standard Borel space. A measure (finite or infinite) defined on
(X,B) is called a Borel measure.

All measures in this section will be Borel measures, and continuous, (or diffuse, or atomless,
or nonatomic...), meaning that the measure of all singletons is 0.

Although we will not need it, we could not help but mention the following result, which is
the measured analogue of Theorem 2.17. It justifies the terminologies standard probability space
and standard σ-finite space, which we define thereafter.

Theorem 2.75 (The measure Isomorphism Theorem, [Kec95, Thm. 17.41]). Let X be a
standard Borel space, endowed with a continuous probability measure µ. Then (X,µ) is measure-
isomorphic to ([0, 1],Leb↾[0,1]) (i.e. there exists a Borel isomorphism φ between X and [0, 1] such
that the pushforward measure φ∗µ is equal to Leb↾[0,1]).

Definition 2.76. We call a pair (X,µ) as in the statement of Theorem 2.75 a standard prob-
ability space, and thus they are all measure-isomorphic.

Corollary 2.77. Let X be a standard Borel space, endowed with a continuous σ-finite measure
λ. Then (X,λ) is measure-isomorphic to (R,Leb).

Definition 2.78. We call a pair (X,λ) as in the statement of Corollary 2.77 a standard σ-finite
space, and thus they are all measure-isomorphic.

We now get to our main goal. We start by defining the σ-algebras of sets that may not be
Borel measurable, but which are close - up to measure 0 - to Borel measurable sets.

Definition 2.79. Fix a Borel measure λ on a standard Borel space (X,B).

1. We say that A ⊆ X is λ-null if there exists B ∈ B with λ(B) = 0 and A ⊆ B.

2. We denote by Nullλ the σ-ideal (containing ∅, closed under countable unions and subsets)
of λ-null sets for λ.

3. The σ-algebra generated by B∪Nullλ, comprised of sets of the form A∪N with A ∈ B and
N ∈ Nullλ is denoted by Measλ, and its elements are called Lebesgue-measurable for
the measure λ (which is identified to its natural completion defined by λ̂(A∪N) := λ(A)).

Definition 2.80. A set A ⊆ X, where X is a standard Borel space, is called universally
measurable if it is in Measλ for any σ-finite measure λ on X.

The following theorem justifies the existence of this section.

Theorem 2.81 (Lusin, see e.g. [Kec95, Thm. 21.10]). Let X be a standard Borel space. Every
analytic set in X is universally measurable.

We can summarize the relations between sets of interest in Figure 4.
Establishing links between universally measurable sets and sets with BP seems like a difficult

problem. Some implications may or may not have already been studied, but the author is not
aware of any result. Any interested reader can consult [LNS10] for more (possibly some answers,
as the author has not read through this paper...)
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Figure 4: Some nice (non-)implications.

3 Preparing the proofs

3.1 Around the Vaught transforms

Everything from this section can be found in [BK96, § 5.1], [Gao09, § 3.2] and [Kec95, § 8.I and
§ 16.B]. We start by recalling the notations usually used in Baire category flavoured proofs: the
category quantifiers. It is good to think of them as topological analogues of the notion of conull
sets and non-null sets, respectively.

Notation 3.1. Let X be a topological space. We define the following category quantifiers:

∀∗x means for comeager many x,
∃∗x means for non-meager many x,

and we will sometimes write ∀∗x ∈ X (resp. ∃∗x ∈ X) to indicate that we are quantifying on
elements of X if there’s more that one topological space involved. Those two notations mean
that ‘one can find a comeager (resp non-meager) set of elements satisfying...’.

For a subset A ⊆ X and x ∈ X, the notation A(x) means that x ∈ A, and as such we have
the following:

∀∗xA(x) ⇐⇒ A is comeager in X,
∃∗xA(x) ⇐⇒ A is non-meager in X,

and similarly, if we quantify ‘locally’ on an open set U ⊆ X, we have

∀∗x ∈ U A(x) ⇐⇒ A is comeager in U,
∃∗x ∈ U A(x) ⇐⇒ A is non-meager in U.

We quickly give the following statement of the important theorem of category quantifiers,
ensuring their ‘commutativity’, the Kuratowski-Ulam theorem.

Theorem 3.2 (Kuratowski-Ulam, see e.g. [Gao09, Thm. 3.2.1]). Let X,Y be second countable
spaces, and A ⊆ X × Y with BP. Then

∀∗(x, y)A(x, y) ⇐⇒ ∀∗x∀∗yA(x, y) ⇐⇒ ∀∗y∀∗xA(x, y).
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We can now get to our main tool, the Vaught transform. To get an intuition on what it
represents, we informally recall a few basic definitions. Whenever G↷ X and A ⊆ X (for any
topological group G and space X), we define

[A] = ‘the smallest G-invariant set containing A’ = {x ∈ X | ∃g ∈ G : g · x ∈ A} ,
(A) = ‘the largest G-invariant set contained in A’ = {x ∈ X | ∀g ∈ G : g · x ∈ A} .

We call [A] the saturation of A, (A) the hull of A, and we have (A) ⊆ A ⊆ [A]. We start by
defining the ‘global’ Vaught transform, which generalizes the saturation and the hull by using
category quantifiers instead.

Definition 3.3. Let G be a topological group acting on a space X. For any set A ⊆ X we
define the global Vaught transforms

A∆ = {x ∈ X | ∃∗g ∈ G : g · x ∈ A} ,
A∗ = {x ∈ X | ∀∗g ∈ G : g · x ∈ A} .

We then localize these definitions to obtain the usual local Vaught transforms. For any
nonempty open set U ⊆ G we define

A∆U = {x ∈ X | ∃∗g ∈ U : g · x ∈ A} ,
A∗U = {x ∈ X | ∀∗g ∈ U : g · x ∈ A} .

As we have just seen, the Vaught transforms are local generalizations of the inner and outer
notions of saturations. As such, they satisfy a few basic properties, which we now recall.

Proposition 3.4 ([Gao09, Prop. 3.2.3],[Kec95, Prop. 16.3]). Let G be a topological group acting
on a space X. For any set A ⊆ X the following hold.

1. Both A∆ and A∗ are invariant, and (A) ⊆ A∗ ⊆ A∆ ⊆ [A];

2. if G is Baire, then (A is G-invariant ⇐⇒ A = A∗ ⇐⇒ A = A∆).

For localized Vaught transforms, the following version of item 2. of the previous Proposition
still holds. We do not however have equivalences (see (3) of Proposition 3.7).

Proposition 3.5. Let G be a topological group, acting on a space X, and let A ⊆ X be G-
invariant. Then for any nonempty open set U ⊆ G we have

A = A∆U = A∗U .

Proof. We prove the first equality, the second one is similar. Invariance clearly implies that
A ⊆ A∆U , as any element of U sends x ∈ A to A. Conversely, if x ∈ A∆U , for non-meager many
g ∈ U we have g · x ∈ A ⇔ x ∈ g−1 ·A = A.

Remark 3.6. It is often useful to work with symmetric open neighborhoods of the identity in
G, and if U ⊆ G is such a neighborhood, then for any A ⊆ X, we have A∆U ⊆ U ·A.

Of course in practice, our acting group will be Polish, so we can say a bit more. Before
stating the stability properties of Vaught transforms, we give a few more useful properties that
are helpful when manipulating them. The following is widely used.

Proposition 3.7 ([Gao09, Prop. 3.2.5]). Let G be a Polish group acting on a space X.
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(1) Monotonicity: Consider subsets A ⊆ B ⊆ X and open subsets V ⊆ U ⊆ G, we have

A∗U A∗V A∆V A∆U

B∗U B∗V B∆V B∆U

⊆

⊆

⊆

⊆

⊆

⊆ ⊆

⊆ ⊆ ⊆

(2) De Morgan’s laws: For any subset A ⊆ X and any nonempty open subset U ⊆ G we have

X \A∆U = (X \A)∗U ,
X \A∗U = (X \A)∆U .

(3) G-invariance: For any A ⊆ X, any nonempty open U ⊆ G and any g ∈ G we have

g · x ∈ A∆V ⇐⇒ x ∈ A∆(V g),

g · x ∈ A∗V ⇐⇒ x ∈ A∗(V g).

We will be using the following two properties, which also give interesting insight on how to
perceive Vaught transforms. We hope that they can provide intuition.

Proposition 3.8 ([Gao09, Prop. 3.2.5 and Prop. 3.2.6]). Let G be a Polish group acting on a
space X.

(1) Countable union/intersection: For subsets A =
⋃

n∈NAn ⊆ X, B =
⋂

n∈NBn ⊆ X and
nonempty open subsets U =

⋃
m∈N Um ⊆ G and V =

⋂
m∈N Vm ⊆ G we have

A∆U =
⋃
n∈N

A∆U
n =

⋃
m∈N

A∆Um =
⋃
n,m

A∆Um
n ,

B∗V =
⋂
n∈N

B∗V
n =

⋂
m∈N

B∗Vm =
⋂
n,m

B∗Vm
n .

(2) ∆-∗ relations: If in addition X is Polish and the G-action is continuous, then for any
Borel subset A ⊆ X and nonempty open subset U ⊆ G we have

A∆U =
⋃{

A∗V | V ⊆ U nonempty open
}
,

A∗U =
⋂{

A∆V | V ⊆ U nonempty open
}
.

Finally, the two following Vaught theorems are about the stability of the Vaught transforms
with regards to the Borel hierarchy and analytic sets.

Theorem 3.9 ([Gao09, Thm. 3.2.7 and Thm. 3.2.9]). Let G be a Polish group acting continuously
on a Polish space X, and A ⊆ X. Consider a subset A ⊆ X and a nonempty open subset U ⊆ G.

• If A is Σ0
α (resp. Π0

α) for some 1 ⩽ α < ω1, then A∆U and A∗U are Σ0
α (resp. Π0

α). In
particular, the Vaught transform of a Borel set is Borel, and that of an open set is open.

• If A is analytic, then so are A∆U and A∗U .

The first point can actually be strengthened, and still holds on Borel G-spaces.

Theorem 3.10 ([Gao09, Thm. 3.3.3]). Let G be a Polish group acting in a Borel manner on a
standard Borel space X. Let A ⊆ X be a Borel subset and U ⊆ G be nonempty and open. Then
A∆U and A∗U are Borel.

In the proofs of Theorem 4.1 we will be using families of the following form.

Notation 3.11. For any family U of nonempty open subsets of G and any family A of subsets
of X, we define the following family of subsets of X:

A∆U :=
{
A∆U | A ∈ A, U ∈ U

}
.
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3.2 Strong Choquet spaces

The content of this section is from [BK96, § 5.2], [Gao09, § 4.1] and [Kec95, § 8.D]. Here we
present the strong Choquet game and the resulting strong Choquet spaces. The weaker notions
of Choquet game and Choquet spaces also exist, but for the sake of brevity we will not present
them. The interested reader can consult [Kec95, §8.C].

Definition 3.12. Given a nonempty topological space X, the strong Choquet game Gs
X is

a two-player game defined by the following rules:

I (x0, U0) (x1, U1)
II V0 V1

. . .

Players I and II take turns in playing nonempty open subsets of X, and in addition Player I is
required to play a point xn ∈ X, and their choices must satisfy the following rules:

1. the subsets (Un), (Vn) must satisfy U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ . . .;

2. Player I must play a point xn ∈ Un;

3. Player II must pick Vn such that xn ∈ Vn.

The first player who violates one of these rules loses, if an infinite sequence of turns is
played, Player II wins the game if

⋂
n Vn =

⋂
Un ̸= ∅, and Player I wins otherwise. Moreover,

as a degenerate case, if X is empty, we consider that Player I has no valid move and loses the
game. It is possible that neither player has a winning strategy. A visual representation of the
first two turns of a game is given in Figure 5.

X

U0
x0

V0
U1

x1

V1

Figure 5: The first two turns of a strong Choquet game.

Definition 3.13. A topological space X is strong Choquet if Player II has a winning strategy
in Gs

X .

It can be shown that any completely metrizable space or any locally compact Hausdorff
space is strong Choquet. We are however interested in converse implications: strong Choquet
is a condition that we will use to show that a space is Polish. Namely, we will use the following
theorem.

Theorem 3.14 ([BK96, Cor. 5.2.4]). A topological space X is Polish if and only if it is T1,
regular, second countable and strong Choquet.
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We recall that for a topological space, being T1 means that for every pair of distinct points,
each one has a neighborhood not containing the other point; being regular means that any closed
subset F of X and any point x not contained in F have non-overlapping open neighborhoods;
and finally being second countable means that the topology has a countable base.

As a note, T1 implies being T0 (which we did not define), so being T1 and regular implies being
T0 and regular, which is equivalent to being T3 (which we also did not define), and Theorem 3.14
is sometimes stated with this condition instead. As conventions around the property of being
T3 are blurry, we chose this formulation instead.

The condition of being regular has the following more practical reformulation, the proof of
which is easy.

Lemma 3.15 ([Mun00, Lem. 31.1]). A topological space X is regular if and only if for any point
x of X and any neighborhood U of x, there is a neighborhood V of x such that V ⊆ U .

3.3 Changing the topology

This section gathers the last requirements for the proof of the Becker-Kechris theorem. Specif-
ically, it deals with two technical results that help in making topology changes as ‘smooth’ as
possible. The following result guarantees Polishness of topologies generated by countable unions.

Lemma 3.16 ([Gao09, Lem. 4.2.2 and Lem 4.3.2]). Let X be a space, and (τn)n∈N a family of
Polish topologies on X, such that

⋂
n∈N τn is Hausdorff.

(1) The topology τ generated by
⋃

n∈N τn is Polish on X.

(2) If in addition G is a Polish group acting on X in a τn-continuous manner for each n, then
G↷ X is τ -continuous.

Proof. (1). We write Xn := (X, τn) and Y :=
∏

n∈NXn the product topological space. the
diagonal D is defined by

D := {(xn) ∈ Y | xn = xn+1 ∀n ∈ N} .

The fact that
⋂

n∈N τn is Hausdorff yields that D is closed in Y : indeed, if (xn) ∈ Y \D, there
exists n1 < n2 such that xn1 ̸= xn2 , and by hypothesis we can find Un1 and Un2 disjoint open
neighborhoods (for any τn!) of xn1 and xn2 respectively, so(

n1−1∏
n=0

Xn

)
× Un1 ×

(
n2−1∏

n=n1+1

Xn

)
× Un2 ×

(
+∞∏

n=n2+1

Xn

)

is a neighborhood of (xn) in Y \D, which is then open. Hence D is Polish, as a closed subset
of a Polish space.

We now consider the embedding

e : X −→ Y
x 7−→ (x, x, x, . . .).

It is obviously a bijection from X to D. It is τ -continuous by definition of τ : the inverse image
of any basic neighborhood of the form

(∏k−1
n=0Xn

)
×Uk ×

(∏+∞
n=k+1Xn

)
in D is Uk, which is in

τk ⊆ τ . We now prove that e is an open map. We let U be a subbasic open set in (X, τ) (i.e. an
element of

⋃
n∈N τn). By definition U ∈ τn0 for a certain n0, we now observe that for any (xn)

in D, (xn) ∈ e(U) if and only if xn0 ∈ U , so e(U) ∩D is an open set of D.
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This concludes the proof of (1), as a continuous bijection which is an open map is an home-
omorphism.

(2). From (1), (X, τ) is homeomorphic to D, so it is enough to check that the (diagonal)
G-action on D is continuous. This is immediate, as by hypothesis each G× (X, τn) → (X, τn) is
continuous, so in the product space everything is satisfied for basic neighborhoods.

The main tool of this section is Theorem 3.18, and to prove it we will also need the following
easy key lemma, which allows us to ‘add closed sets’ to our Polish topologies while retaining
Polishness.

Lemma 3.17 ([Gao09, Lem. 4.2.1]). Let (X, τ) be a Polish space, with F a closed subset of X.
The topology τF generated by τ ∪ {F} is Polish on X. Moreover, F is clopen in this topology.

Proof. As both F and X \F are Polish subspaces of X, there exist compatible bounded complete
metrics dF < 1 and dX\F < 1 on F and X \F respectively. We define on X the following metric:

d(x, y) =


dF (x, y) if x, y ∈ F ,
dX\F (x, y) if x, y ∈ X \ F ,

1 otherwise,

which is second countable (hence separable), complete, and compatible with τF . It is clear that
F is clopen.

We can now state and prove the main theorem ‘topology change’ theorem, which will allow
us to iteratively define a convenient topology from the Vaught transforms in Section 4.

Theorem 3.18 ([Gao09, Thm. 4.2.3]). Let (X, τ) be a Polish space, and let A be a countable
collection of elements of Σ0

α(X, τ), for 1 ⩽ α < ω1. Then there exists a countable family B of
elements of Σ0

α(X, τ) generating a Polish topology finer than τ and such that A ⊆ B.

Proof. The proof is by a transfinite induction on α. The starting case, for α = 1 is trivial, as
B = A ∪ U works, for any countable base U of τ .

Successor case: Assume that the statement holds for α ⩾ 1. We consider a countable col-
lection A = (An)n∈N ⊆ Σ0

α+1(X, τ). By definition of Σ0
α+1(X, τ) sets we write each An as

An =
⋃

m∈NB
m
n , where each Bm

n is in Π0
α(X, τ). The collection C = {X \Bm

n | n,m ∈ N} is
countable and included in Σ0

α(X, τ). Thus, by inductive hypothesis, we can find D ⊆ Σ0
α(X, τ)

which is countable, contains C, and generates a Polish topology τD finer than τ . Observe that by
construction each set Bm

n is τD-closed, so Lemma 3.17 yields a Polish topology τn,mD refining τD.
Moreover,

⋂
n,m∈N τ

n,m
D is Hausdorff, as it is finer than τD, which is Hausdorff. Now Lemma 3.16

ensures us that the topology τ ′ generated by τD ∪{Bm
n | n,m ∈ N} remains Polish, and each An

is τ ′-open, as an union of subbasic sets, so τ ′ refines τ . We finally denote by BD a countable base
for τD, and observe that BD ∪ {Bm

n | n,m ∈ N} ∪ A generates τ ′ (and contains A as required).

Limit ordinal: We now assume that α is a limit ordinal, and we consider a countable collection
A = (An)n∈N ⊆ Σ0

α(X, τ), and write each An as An =
⋃

m∈NB
m
n , where each Bm

n is in Π0
βm
n
(X, τ)

for some βm
n < α. We set C = {Bm

n | n,m ∈ N}. We choose a cofinal sequence (recall that
α < ω1) in α: (γn)n∈N such that γ0 < γ1 < . . . < α. For each n ∈ N we define Cn :={
B ∈ C | B ∈ Pi0γn(X, τ)

}
, such that each Cn is a countable collection of Σ0

γn+1(X, τ) sets. Since
γn + 1 < α for any n, the inductive hypothesis guarantees that we can find a family Dn ⊇ Cn
such that the topology τDn is Polish and finer than τ . By Lemma 3.16 again, the topology τ ′

generated by
⋃

n∈N τDn is Polish. We conclude the proof by noticing that each An is τ ′-open (it
is clear by construction as

⋃
Dk ⊇ C) and that

⋃
n∈NDn ∪ A generates τ ′.
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Remark 3.19. An important remark is that adjoining the complements of the sets of A to A
(i.e. setting A′ = A ∪ (X \ · A) and applying Theorem 3.18 to A′), it is possible to realize the
elements of A as clopen sets in the finer topology given by Theorem 3.18.

4 The Becker-Kechris theorem

We can now state the main theorem of interest in this note: the theorem from Becker and
Kechris on topological realization for Polish group actions.

Theorem 4.1 ([BK96, Thm. 5.2.1], see also [Gao09, 4.4.6]). Let G be a Polish group acting
in a Borel manner on a standard Borel space X. Then there exists a Polish topology τ on X
which generates the Borel structure, and for which the G-action is continuous.

4.1 First proof by Becker and Kechris

We present here the original proof by Becker and Kechris, and we will mainly follow Gao’s
presentation. For this whole section, we fix a Polish group G, a Borel G-action on a standard
Borel space X, a base U for the topology on G and a collection A of analytic subsets of X (each
statement will specify the conditions required on A).

Before starting, we prove a preliminary technical lemma on Vaught transforms that will
be useful at different steps of the proof. In addition to the Baire Category Theorem (see e.g.
[Kec95, Thm. 8.4]), this proof (and some of the following) uses some results of descriptive set
theory, for which we do not give a proof.

Lemma 4.2 ([Gao09, Lem. 4.4.1]). Let g ∈ G, x ∈ X, A ∈ Σ1
1(X), and W ⊆ G be open and

nonempty. If g · x ∈ A∆W then there exists nonempty open sets U, V ∈ U such that
x ∈ A∆U ,
g ∈ V,
UV −1 ⊆ W.

Proof. By G-invariance in Proposition 3.7, g · x ∈ A∆W yields that x ∈ A∆(Wg). Thus, by
definition, the set H = {h ∈ Wg | h · x ∈ A} is non-meager. Moreover, H is analytic as the
preimage of the analytic set A by the Borel function h 7→ h · x (see Proposition 2.26), so in
particular it has BP (by Theorem 2.49). Therefore, by the Baire Category Theorem and the
Baire alternative (Theorem 2.39 and Proposition 2.47), there exists U0 ∈ U such that U0 ⊆ Wg
and H is comeager in U0. In other ‘words’, we have x ∈ A∗U0 .

Now, U0g
−1 ⊆ W so by continuity of the right multiplication by g−1 (and continuity of the

inverse) there exists U, V ∈ U such that U ⊆ U0, g ∈ V and UV −1 ⊆ W . In particular we have
x ∈ A∗U0 ⊆ A∗U ⊆ A∆U by monotonicity in Proposition 3.7.

We now get to the proof of 4.1 itself. The main steps of the proof are as follows.

1. Define a topology τ on X via the Vaught transforms.

2. Show that the G-action is τ -continuous on X.

3. Prove that (X, τ) is T1.

4. Prove that (X, τ) is regular.
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5. Prove that (X, τ) is strong Choquet.

6. Conclude that (X, τ) is Polish and induces the original Borel structure of X.

Step 1. The desired topology will be the one generated by A∆U (see Notation 3.11), which we
will denote by τA∆U . However, in order to obtain all the needed properties, A has to satisfy a few
technical conditions, which will be detailed in the corresponding steps. The following iterated
construction guarantees that A satisfies everything we want. It uses both Theorem 3.18 and the
construction used in its proof.

We start by choosing a Polish topology τ̃ on X which generates its Borel structure, and we
choose a countable base A0 for this topology. If U is a countable base for the topology of G,
then for any n ∈ N, we define

An+1 ⊇
{
X \A∆U | A ∈ An, U ∈ U

}
∪ A∆U

to be the countable family provided by Theorem 3.18. It generates a Polish topology on X, and
all the elements of An+1 are in Σ0

α(X, τ̃) for some 1 ⩽ α < ω1. Finally by Lemma 3.16, the
topology τA generated by A :=

⋃
n∈NAn is Polish. Note that A∆U ⊆ A, and that any element

of A is still in some Σ0
α(X, τ̃), so in particular it is Borel.

The topology we are interested in is not τA, but τA∆U . By construction τA∆U is second
countable as soon as we ask that U is countable, (it has a countable subbasis, so it has a
countable base). Finally, as we will see, it will satisfy the conditions of steps 3, 4 and 5.

Step 2. ([Gao09, Lem. 4.4.2]). The G-action on X is τA∆U -continuous.

Proof. We fix g0 ∈ G, x0 ∈ X, A ∈ A and W ∈ U nonempty open such that g0 · x0 ∈ A∆W . By
Lemma 4.2 there exists nonempty open sets U, V ∈ U such that

x0 ∈ A∆U ,
g0 ∈ V,
UV −1 ⊆ W.

The set A∆U is τA∆U -open, and we check that for all g ∈ V and all x ∈ A∆U , we have g·x ∈ A∆W .
Indeed, x ∈ A∆U so by G-invariance and monotonicity in Proposition 3.7 g · x ∈ A∆(Ug−1) ⊆
A∆(UV −1) ⊆ A∆W .

Step 3. ([Gao09, Lem. 4.4.3]). Let B be a base for a Polish topology τB generating the Borel
structure of X, and A ⊇ B. Then τA∆U is T1.

Proof. We fix x ̸= y ∈ X, and our goal is to find B ∈ B and U ∈ U such that x ∈ B∆U and
y /∈ B∆U .

We consider the following function:

f : G −→ X ×X
g 7−→ (g · x, g · y),

which is a Borel function by assumption. By Proposition 2.48 it is BP-measurable, so by [Kec95,
Thm. 8.38] and the Baire Category Theorem there exists a dense Gδ set H ⊆ G on which f is
continuous. We fix g0 ∈ H. Since g0 · x ̸= g0 · y, by virtue of (X, τB) being T2 we can find two
disjoint subsets B,C ∈ B such that (g0 · x, g0 · y) ∈ B × C. Now by continuity of f↾H we can
find an open set U ⊆ G containing g0 and such that f(U ∩ H) ⊆ B × C. By definition H is
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comeager in G, so H ∩ U is comeager in U , i.e. x ∈ B∗U and y ∈ C∗U . Now by monotonicity
and De Morgan’s laws in Proposition 3.7 we have

x ∈ B∗U ⊆ B∆U ⊆ (X \ C)∆U = X \ C∗U ,

so y /∈ B∆U , concluding the proof.

Step 4. ([Gao09, Lem. 4.4.4]). If A is such that for any A ∈ A and U ∈ U we have X\A∆U ∈ A,
then τA∆U is regular.

Proof. We fix A ∈ A, W ⊆ U , and x ∈ A∆W . By Lemma 3.15 it is enough to show that there
exists U ∈ U such that x ∈ A∆U ⊆ A∆U ⊆ A∆W .

Since eG · x = x, by Lemma 4.2 there exists nonempty open sets U1, V1 ∈ U such that
x ∈ A∆U1 ,
eG ∈ V1,

U1V
−1
1 ⊆ W.

Applying Lemma 4.2 immediately again, to eG ·x = x ∈ A∆U1 this time, we find nonempty open
sets U2, V2 ∈ U such that 

x ∈ A∆U2 ,
eG ∈ V2,

U2V
−1
2 ⊆ U1.

We denote U := U2 and claim that A∆U is the desired neighborhood. We fix V ∈ U such that
V ⊆ V −1

1 ∩ V2 ∋ eG, and we set F := (A∆U1)∗V . There are three things that we need to check.

(i) F is τA∆U -closed: By Proposition 3.7 again we have X \F = X \(A∆U1)∗V = (X \A∆U1)∆V

which is in τA∆U by assumption.

(ii) A∆U ⊆ F : Fix y ∈ A∆U . For any g ∈ V ⊆ V2, we have U2g
−1 ⊆ U2V

−1
2 ⊆ U1 so U ⊆ U1g.

Therefore, by monotonicity we have ∀g ∈ V : y ∈ A∆U ⊆ A∆(U1g), which yields that
∀g ∈ V : g · y ∈ A∆U1 by G-invariance. This easily implies ∀∗g ∈ V : g · y ∈ A∆U1 , hence
y ∈ (A∆U1)∗V = F as desired.

(iii) F ⊆ A∆W : Fix y ∈ F . Let g0 be in V such that g0 · y ∈ A∆U1 (there are comeager many
such g0 by definition of F ). Then by G-invariance y is in A∆(U1g0), but U1g0 ⊆ U1V

−1
1 ⊆ W ,

so monotonicity concludes the proof.

Step 5. ([Gao09, Lem. 4.4.5]). Let U be countable. Let A be a countable family of Borel
subsets of X, containing X, such that A∆U ⊆ A and such that the topology τA generated by A
is Polish. Then τA∆U is strong Choquet.

Proof. In order to lighten the notations we write τ for τA∆U in the rest of this proof. We denote
by B the countable base of τ made of nonempty intersections of finitely many elements of A∆U .
By Polishness of (X, τA) and of G we also fix a τA-compatible complete metric d on X as well
as a complete compatible metric dG on G.

We consider the strong Choquet game Gs
(X,τ) with the following notations:

I (x0,M0) (x1,M1)
II N0 N1

. . .
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First we describe a strategy for player II, and then we show that it is a winning strategy.

The τ -open sets (Nn)n∈N are inductively defined as follows, along with sequences (An)n∈N
(with A−1 = X) of elements of A and (Un)n∈N (with U−1 = G) of elements of U , so that they
satisfy the following for any n ∈ N:

(1) xn ∈ Nn ⊆ Nn
τ ⊆ Mn,

(2) Nn ⊆ A∆Un
n ,

(3) diamd(An) <
1

2n
and An

τA ⊆ An−1,

(4) diamdG(Un) <
1

2n
and Un ⊆ Un−1

(⋆)

We now prove that these sequences exist. Assume that the game has been played according to
the rules up to the turn n (of Player II), and that each move of Player II has produced elements
of the previously defined sequences satisfying the desired conditions. So far the game looks like
this:

I (x0,M0) (x1,M1) . . . (xn−1,Mn−1) (xn,Mn)
II N0 N1 . . . Nn−1

and it is the turn of Player II. We show that Nn, An and Un satisfying conditions (⋆) actually
exist. First note that

xn ⊆ Mn ⊆ Nn−1 ⊆ A
∆Un−1

n−1

by the induction hypothesis. By definition, this means that for non-meager many g ∈ Un−1,
g ·xn ∈ An−1. We can just shrink An−1 to get An. Indeed the fact that A is a base for τA, which
is Polish on X, means that there exists An ∈ A satisfying (3) and such that for non-meager
many g ∈ Un−1, g ·xn ∈ An (at most countably many elements in A satisfy (3) and are contained
in An−1, so at least one has work, otherwise it would contradict the non-meagerness).

We can shrank Un−1 to get Un ∈ U satisfying (4) and such that there are non-meager many
g ∈ Un satisfying g · xn ∈ An with the same argument. Indeed sets of the form A∆Ui

i give us
control over both G and X at the same time.

Hence xn ∈ A∆Un
n . We then set

N := Mn ∩ (A∆Un
n ),

and since M is τ -open, by step 4 and Lemma 3.15 there exists Nn ∈ B such that xn ∈ Nn and
Nn

τ ⊆ N ⊆ Mn. This guarantees that (1) is satisfied, and finally notice that (2) is trivially satis-
fied by definition of N . Notice also that condition (1) guarantees that playing Nn is a valid move.

The only remaining part is to show that the previously described strategy is winning for
Player II. We use the same notations. By (⋆) for any n we have xn ∈ A∆Un

n , i.e. there exists a
non-meager set of g in Un such that g · xn ∈ An. In particular there exists gn ∈ Un and yn ∈ An

such that gn · xn = yn. By (⋆) again (gn) converges to some g ∈
⋂

n∈N Un and (yn) to some
y ∈

⋂
n∈NAn. As the topology τA refines τ , we also have limτ yn = y. We now set x := g−1 · y.

By step 2 the G-action is τ -continuous, so the xn := g−1
n · yn must τ -converge to x. We conclude

the proof by showing that x ∈ Nn for any n ∈ N.
We fix n ∈ N. For any m > n, xm ∈ Nm ⊆ Nm

τ ⊆ Mm ⊆ Nn, and therefore x =
limτ

m>n xm ∈ Nn+1
τ ⊆ Nn, concluding the proof.
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Step 6. The proof is basically over, and it only remains to check that we have all we wanted.
The topology τA∆U is second countable by construction, is T1 by Step 3, regular by Step 4

and strong Choquet by Step 5. Therefore it is Polish by Theorem 3.14.
By Theorem 3.10 and the construction of A in Step 1 (which guarantees that any element of

A is Borel), any element in the subbase of τA∆U is Borel for the original structure of X. As noted
in [BK96, Rem. 5.1.2], by Corollary 2.16 (used with the identity function) the Borel structure
of (X, τA∆U ) can only be the original one.

This concludes the (first) proof of Theorem 4.1. ■

4.2 Second proof by Hjorth

This section presents a second proof of Theorem 4.1 from Hjorth using a ‘stronger’ result (see
[Hjo99, Thm. 2.2]), as well as the universal compact Polish G-space result (see Theorem 2.73).

This part is actually closer in spirit to what we did in Section 3.3, and as such Gao’s book
presents this proof before the one presented in Section 4.1, but here we opted for the chronological
order. This proof is in two steps (Lemma 4.5 and Theorem 4.6). The main one consists in refining
the topology by adding Vaught transforms of a closed set to it, while retaining both Polishness
and continuity. The second step is mainly a transfinite induction generalizing the result of the
first step.

For the first part we make use of the following Polish group, which is of interest in its own
right. In the rest of this section, the notation B(x, r) will represent an open ball of center x and
radius r.

Definition 4.3. Let G be a topological group, endowed with a right-invariant compatible metric
d which is bounded by 1. We denote by Lip1(G, d) the set of 1-Lipschitz functions f : G → [0, 1],
i.e. functions satisfying

|f(g)− f(h)| ⩽ d(g, h)

for all g, h ∈ G. Note that Lip1(G, d) is nonempty as it contains d(g, ·), for any g ∈ G.

We have the following basic properties for Lip1(G, d):

Lemma 4.4 ([Hjo99, Lem.1.8 and Lem 1.10]). Let G be a Polish group, endowed with a right-
invariant compatible metric d which is bounded by 1. Under the topology of pointwise convergence,
the space Lip1(G, d) is compact, and the following map is a well-defined continuous G-action:

G× Lip1(G, d) −→ Lip1(G, d)
(g, f) 7−→ (g · f : h 7→ f(hg)) .

Proof. As the topology of pointwise convergence on Lip1(G, d) is the product topology on [0, 1]G,
compactness is ensured by the Tychonoff Theorem.

We next prove that Lip1(G, d) is metrizable, which will yield Polishness (see e.g. [Kec95,
Prop. 4.2]). We fix a dense countable set Q = (qn)n∈N in G. By continuity of the functions, we
can identify Lip1(G, d) with a closed subset of [0, 1]Q, which can be endowed with the compatible
metric defined by

d(f1, f2) =
∑
n∈N

1

2n+1
|f1(qn)− f2(qn)|

for any two functions f1, f2 in [0, 1]Q.
The only thing left to do is to prove the continuity of the G-action on Lip1(G, d). We first

check that the action is well-defined. For any g1, g2, g, h, h
′ ∈ G and any f ∈ Lip1(G, d) we have

(g2g1 · f)(h) = f(hg2g1) = (g1 · f)(hg2) = (g2 · (g1 · f))(h),
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and by right-invariance of d we have∣∣f(hg)− f(h′g)
∣∣ ⩽ d(hg, h′g) = d(h, h′),

which means that (h 7→ f(hg)) = g · f is 1-Lipschitz. We can now get to the continuity of the
action. We fix h ∈ G, as well as Bd(h, ε), the open d-ball of center h and radius ε > 0. For
g in a small enough neighborhood W of eG, by continuity of the right multiplication hg is in
Bd(h, ε), so for any f ∈ Lip1(G, d) we have

|(g · f)(h)− f(h)| = |f(hg)− f(h)| ⩽ d(hg, h) < ε.

Therefore, if we define the open neighborhood

V (h,B[0,1](f0(h), ε)) =
{
f ∈ Lip1(G, d) | f(h) ∈ B[0,1](f0(h), ε)

}
of some f0 in Lip1(G, d) comprised of the functions f satisfying |f(h)− f0(h)| < ε (recall that
for open sets U in [0.1], sets of the form V (h,U) form a subbasis of the pointwise topology, see
e.g. [Mun00, § 46]), then for any g ∈ W and any f ∈ V we have by the triangle inequality

|(g · f)(h)− f0(h)| ⩽ 2ε,

so g · f is in V (h,B[0,1](f0(h), 2ε)).

Lemma 4.5 ([Gao09, Lem. 4.3.1]). Let G be a Polish group acting in a continuous manner on
a Polish space (X, τ), and consider a closed set F ⊆ X. Then there exists a topology τ ′ on X
such that the following hold:

(1) τ ′ is Polish on X;

(2) τ ′ ⊇ τ , i.e. τ ′ refines τ ;

(3) τ ′ ⊆ Σ0
2(X, τ);

(4) for any nonempty open set U ⊆ G, F∆U ∈ τ ′;

(5) G↷ (X, τ ′) is continuous.

Proof. Step 1: We define the topology τ ′ on X and lay the groundwork.
We begin this proof by considering a right-invariant compatible metric d on G which is

bounded by 1, and for each x ∈ X we also define fx ∈ Lip1(G, d) by

fx(g) = d(g, {h ∈ G | h · x /∈ F}) = inf {d(g, h) | h · x /∈ F} .

We use the definition of the G-action on Lip1(G, d) from Lemma 4.4, and endow it with its
topology of pointwise convergence. We prove that the map X ∋ x 7→ fx ∈ Lip1(G, d) is G-
equivariant, i.e. fk·x = k · fx for any k ∈ G and any x ∈ X. We fix k ∈ G and x ∈ X. By
right-invariance of d, for any g ∈ G we have

k · fx(g) = fx(gk)

= inf {d(gk, h) | h · x /∈ F}
= inf

{
d(gk, hk−1k) | hk−1k · x /∈ F

}
= inf

{
d(g, hk−1) | hk−1k · x /∈ F

}
= inf

{
d(g, h′) | h′k · x /∈ F

}
= inf

{
d(g, h′) | h′ · (k · x) /∈ F

}
= fk·x(g).
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The space X × Lip1(G, d) is endowed with the diagonal G-action defined by g · (x, f) 7→
(g · x, g · f), which is continuous by hypothesis and by Lemma 4.4.

We define the following function

φ : X −→ X × Lip1(G, d)
x 7−→ (x, fx).

It is clearly injective, and by the previous argument, it is G-equivariant. We now prove that
φ(X) is a Gδ set in X × Lip1(G, d). To this end, we fix a dense countable set G0 ⊆ G. For any
(x, f) ∈ X × Lip1(G, d) we have

(x, f) ∈ φ(X) ⇐⇒ f = fx

⇐⇒ ∀g ∈ G0 : f(g) = fx(g)

⇐⇒ ∀g ∈ G0 : ∀q ∈ Q : (f(g) < q ⇔ fx(g) < q)

⇐⇒ ∀g ∈ G0 : ∀q ∈ Q : (f(g) < q ⇔ ∃h ∈ Bd(g, q) such that h · x /∈ F ).

Indeed the second and third equivalences are by density and continuity, and the fourth is by
1-Lipschitzness and by definition of fx. In particular, for any g ∈ G0, and any q ∈ Q, the set{
f ∈ Lip1(G, d) | f(g) < q

}
is open and from the last formulation we get that {x ∈ X | fx(g) < q}

is also open. Therefore, φ(X) is Gδ as a countable intersection (over G0 and Q) of Boolean com-
binations of open subsets of X × Lip1(G, d).

We proved that φ(X) is Gδ in the product X × Lip1(G, d), so in particular it is Polish by
Proposition 2.4. We define on X the topology τ ′ by pulling back the product topology from
φ(X) along φ, i.e. we declare that A ⊆ X is open if and only if φ(A) is open in X ×Lip1(G, d).

Step 2: We show that τ ′ is as desired.
Through the identification φ : X → φ(X) and from the previous argument (X, τ ′) is Polish,

so (1) is satisfied, and the diagonal action on the G-invariant set φ(X) is continuous, so by
G-equivariance (5) is also satisfied.

By definition, φ is an open map, i.e. φ(A) is open (in the product topology) for any τ -open
set A. Indeed φ−1 is continuous as the projection on the first factor. From this we get that
τ ′ ⊇ τ , so (2) is satisfied.

We check (3): we fix A in τ ′, and show that A is in Σ0
2(X, τ). Once again we fix a dense

countable subset G0 ⊆ G and B = {B(g, q) ⊆ G | g ∈ G0 and q ∈ Q>0} a countable subbase of
the topology on G. For all q ∈ Q>0, all g ∈ G0 and all open sets A ⊆ X, sets of the form

A×
{
f ∈ Lip1(G, d) | f(g) < q

}
or A×

{
f ∈ Lip1(G, d) | f(g) > q

}
form a subbase of the topology on X × Lip1(G, d). We check . We then have

φ(x) ∈ A×
{
f ∈ Lip1(G, d) | f(g) < q

}
⇐⇒ x ∈ A and fx(g) < q

⇐⇒ x ∈ A and ∃h ∈ B(g, q), h · x /∈ F,

which means that φ−1(A ×
{
f ∈ Lip1(G, d) | f(g) < q

}
) is τ -open. Now by definition of fx we

have

φ(x) ∈ A×
{
f ∈ Lip1(G, d) | f(g) > q

}
⇐⇒ x ∈ A and fx(g) > q

⇐⇒ x ∈ A and ∃q′ ∈ Q>0, ∃V ∈ B, (B(g, q + q′) ⊆ V and ∀h ∈ V : h · x ∈ F ),
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which is Σ0
2(X, τ), as the condition on the second coordinate is a countable union (on Q>0 and

B) of Σ0
2(X, τ) conditions.

We finally check (4): we fix an nonempty open set U ⊆ G, and show that F∆U is τ ′-open.
Notice that fx(g) > 0 =⇒ g ·x ∈ F holds by definition. For the converse, by the Baire category
Theorem if for any W ⊆ U open we have ∀∗g ∈ W : g · x ∈ F then by continuity of the action
and by density of the g ∈ W , W · x ∈ F , so in particular ∀g ∈ W : fx(g) > 0. Therefore by
Proposition 3.8 the condition x ∈ F∆U =

⋃{
F ∗W | ∅ ̸= W ⊆ U in a countable base

}
implies

that ∃∗g ∈ U : fx(g) > 0.
We then define

A := {(x, fx) | fx(eG) > 0} ,

and by definition of the diagonal action we have

φ(x) ∈ A∆U ⇐⇒ ∃∗g ∈ U, (g · x = y and g · fx = fy, with fy(eG) > 0)

⇐⇒ ∃∗g ∈ U, fg·x(eG) > 0

⇐⇒ ∃∗g ∈ U, fx(g) > 0

⇐⇒ ∃∗g ∈ U, g · x ∈ F

⇐⇒ x ∈ F∆U ,

where the penultimate equivalence holds by the previous argument. As the set A is open in
the restriction of the product topology to φ(X), then so is A∆U by Theorem 3.9, hence F∆U is
τ ′-open.

For the next proof, if one wants to consult the references, we advise going directly for Hjorth’s,
as we believe there is a small mistake in Gao’s exposition.

Theorem 4.6 (Hjorth, see [Hjo99, Thm. 2.2] or [Gao09, Thm. 4.3.3]). Consider a Polish
group G, a continuous G-action on a Polish space (X, τ), a countable collection U of nonempty
open subsets of G, and a countable collection A of Σ0

α(X, τ) subsets of X, for some 1 ⩽ α < ω1.
Then there exists a topology τ ′ on X such that the following hold:

1. τ ′ is Polish on X;

2. τ ′ ⊇ τ , i.e. τ ′ refines τ ;

3. τ ′ ⊆ Σ0
α(X, τ);

4. A∆U ⊆ τ ′;

5. G↷ (X, τ ′) is continuous.

Proof. Without loss of generality we can take U to be a countable base for the topology on
G, comprised only of nonempty open sets. The proof is by a transfinite induction on α. The
starting case, for α = 1 is trivial, as τ = τ ′ is satisfactory by Theorem 3.9.

Successor case: Assume that the statement holds for α ⩾ 1. We enumerate A = (An)n∈N ⊆
Σ0
α+1(X, τ). From the definition of Σ0

α+1-sets, we also let (Bn,m)n,m∈N ⊆ Π0
α(X, τ) be such

that for each n we have An =
⋃

m∈NBn,m. We define the collection of complements C =
{X \Bn,m | n,m ∈ N} ⊆ Σ0

α(X, τ). It is countable, so by the inductive hypothesis, there exists
τα satisfying the desired conditions with regards to C, and in particular, by De Morgan’s laws
in Proposition 3.7, for any U ∈ U each (X \ Bn,m)∆U = X \ B∗U

n,m is τα-open, i.e. each B∗U
n,m is
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τα-closed. Hence, for each n and m, we can apply Lemma 4.5: there exists a topology τn,m such
that

(1) τn,m is Polish on X;

(2) τn,m ⊇ τα ⊇ τ ;

(3) τn,m ⊆ Σ0
2(X, τα) ⊆ Σ0

α+1(X, τ);

(4) for any U0, U1 ∈ U , (B∗U0
n,m)∆U1 ∈ τn,m;

(5) G↷ (X, τn,m) is continuous.

We now prove that

A∆U
n =

⋃
m∈N

B∆U
n,m =

⋃{
(B∗U0

n,m)∆U1 | m ∈ N, U0, U1 nonempty open, U0U1 ⊆ U
}
. (†)

The first equality is (1) of Proposition 3.8. For the second one, we notice by G-invariance in
Proposition 3.7 that for any m ∈ N and any U0, U1 nonempty open, U0U1 ⊆ U we have

(B∆U0
n,m )∆U1 = B∆U0U1

n,m and (B∗U0
n,m)∗U1 = B∗U0U1

n,m .

Therefore by monotonicity in Proposition 3.7 we have B∗U0U1
n,m ⊆ B∆U

n,m, which yields (⊇) in the
second equality of (†), and if we write B∆U

n,m =
⋃{

B∗V
n,m | V ⊆ U nonempty open

}
by (2) of

Proposition 3.8, for any nonempty open V ⊆ U such that U0U1 ⊆ V , we have B∗V
n,m ⊆ B∗U0U1

n,m =

(B∗U0
n,m)∗U1 ⊆ (B∗U0

n,m)∆V1 , yielding (⊆). We have thus proved that A∆U ⊆ τn,m.
We conclude by invoking Lemma 3.16, which guarantees everything we need from the topol-

ogy τ ′ generated by
⋃

n,m∈N τn,m.

Limit ordinal: We now assume that α is a limit ordinal. We keep the same notations, this
time with Bn,m ∈ Π0

βn,m
(X, τ), with βn,m < α. Then for any n,m ∈ N, Bn,m ∈ Σ0

βn,m+1(X, τ)
with βn,m + 1 < α. By the inductive hypothesis, for any n,m we can find a topology τn,m such
that

(1’) τn,m is Polish on X;

(2’) τn,m ⊇ τ ;

(3’) τn,m ⊆ Σ0
βn,m+1(X, τ);

(4’) for any U ∈ U , B∆U
n,m ∈ τn,m;

(5’) G↷ (X, τn,m) is continuous.

An application of Lemma 3.16 concludes, as the topology τ ′ generated by
⋃

n,m∈N τn,m is such
that all the A∆U

n =
⋃
B∆U

n,m (by Proposition 3.8) are τ ′-open.

Corollary 4.7 (Hjorth, see [Hjo99, Cor. 2.3] or [Gao09, Cor. 4.3.4]). Let G be a Polish group,
acting in a continuous manner on a Polish space (X, τ). Let (An) be a sequence of G-invariant
Borel subsets of X. Then there exists a Polish topology τ ′ refining τ , making each of the An

open, and such that the G-action on X is still τ ′-continuous.
Moreover, if each An is in Σ0

α(X, τ) (for some 1 ⩽ α < ω1), then τ ′ ⊆ Σ0
α(X, τ).

Proof. Each An is G-invariant, so by Proposition 3.5, for any U ⊆ G nonempty and open we
have An = A∆U

n . Applying Theorem 4.6 concludes.

By using Theorem 2.73 to turn any Borel G-space into a (compact) Polish G-space, and then
using Corollary 4.7 with the Borel invariant set X ⊆ K, we obtain Theorem 4.1 again. ■
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